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Supplementary Figure 1 | High quantitative and qualitative reproducibility
of STARR-seq in D. melanogaster S2 cells.

(a) The quantitative reproducibility of STARR-seq in two independent biological
replicates was assessed at enhancer peak summits (D. melanogaster (D.mel),
2,325 peaks; D. yakuba (D.yak), 2,293 peaks; D. ananassae (D.ana), 2,096 peaks;
D. pseudoobscura (D.pse), 3,469 peaks; D. willistoni (D.wil), 2,860 peaks) and for
100,000 positions randomly sampled from the genome (common D.
melanogaster coordinates for all species). Each data point represents the
fragment density for both replicates normalized to 1 million mapped fragments
(FPM). The Pearson correlation coefficient (PCC) and the coefficient of
determination (R?) for the linear fit (plus the regression line) are indicated in
each subplot. The open black circle shows median values of coverage for
replicate 1 versus replicate 2. (b) Qualitative reproducibility of STARR-seq
measuring the consistency of enhancer calls between enhancers called in
replicate 1 evaluated with enrichment data from replicate 2 equivalently to the
assessment of conservation (bar height, relaxed settings with P < 0.05; white
line, P < 0.001). The second bar for each species evaluates replicate 2 against
replicate 1. (c,d) The same data are shown as for a and b, but using peak calls
and fragment densities in the respective, original Drosophila genomes before
coordinate translation.
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Supplementary Figure 2 | Similar genomic distribution of STARR-seq
enhancers for all five Drosophila species in D. melanogaster S2 cells.

The pie charts show the absolute genomic distribution of enhancers across
different functional regions, and the bar charts show enrichment or depletion
relative to overall region sizes in the genome (a, D. melanogaster; b, D. yakuba; c,
D. ananassae; d, D. pseudoobscura; e, D. willistoni). Globally, the majority of
identified enhancers were located within introns (53.2-59.4%) and in intergenic
regions (18.7-26.3%), as described in ref. 1. Overall the genomic distribution of
enhancers is comparable among the five Drosophila species. These data show
that enhancer location with respect to different genomic regions is similar for all
five Drosophila species.
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Supplementary Figure 3 | Functional conservation of open and closed
D. melanogaster S2 cell enhancers in D. melanogaster S2 cells.

D. melanogaster S2 cell enhancers were classified as open or closed depending
on their accessibility in DNase I hypersensitivity (DHS) sequencing assays as
described previouslyl. The functional conservation rates of (a) 1,554 open and
(b) 771 closed D. melanogaster enhancers in the 4 other Drosophila species are
shown (see Figure 1c for details of the conservation rate analysis). The
conservation rate of open enhancers is roughly twice as high as for closed
enhancers, whereas both show similar reproducibility in independent replicates
(D. melanogaster bars, marked by an asterisk).
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Supplementary Figure 4 | Positional and compensatory conservation of

enhancers.

The number of positionally conserved D. melanogaster enhancers declines with
evolutionary distances. The drop in positionally conserved enhancers, however,
is balanced by an increasing number of compensatory enhancers within the
same respective gene loci, leading to a similar number of enhancers per gene
locus. This might stabilize gene expression levels or confer regulatory
robustness?-4. Note that this plot shows data from analysis of the two biological
replicates combined. The white numbers inside the bars indicate the fraction of
enhancers of each category as percentage of the total number of D. melanogaster
enhancers (1,552) assigned to 1,201 gene loci.

Nature Genetics: doi:10.1038/ng.3009



D.yak D.ana D.pse D.wil D.yak D.ana D.pse D.wil
100 q

==
w0 | BRI S
—_ —v—_'__'__'_
e -
sl — L =
=
40 —

20 4 — —_

500bp
Sequence identity (%)
[l non-conserved [l |conserved

L conservation over 500bp enhancer loci 11 conservation over Srp motifs |
C
D.yak D.ana D.pse D.wil D.yak D.ana D.pse D.wil B
100 g
= T T T T3
|
< 80 [ o - ' S
= ' | L _ - _:_
of - ' .
g H 60 4 | [
k=4
e* - . | | :
T 2 40 | i - ! i - ! @
[ —_ ! - | ! l 2
3 Il ll | 1 1 e}
g I ! | 1 I ' @
& 20 7 | [ ' —_ I 1 5
| | —_ | l c
1
0 o - - L. =
1 conservation over 100bp enhancer loci 11 conservation over Srp motifs |
e
D.yak D.ana D.pse D.wil
100
- - f
80 ! — 0
! ' 2 2
= ! 1 3 »
g 5 24 A
Z e [ Al PaTa=—
H i Srp
k4
@
o
g 40 § 22
g g st C
3 | S =AY YREMT
' X < Btd
207 o8
| ' |
! .
|
0 -~ -

L conservation over Btd motifs |

Supplementary Figure 5 | Motif conservation by positional sequence
constraints.

(a) Pairwise sequence identity for functionally conserved (colored) and non-
conserved (gray) enhancers along the entire 500-bp enhancer sequence or (c)
for a 100-bp core enhancer sequence (boxes depict the median and the
interquartile range, and whiskers depict the 10th and 90th percentiles). (b,d)
Sequence identity as in a and c, respectively, but restricted to positions that
overlap with motifs of the transcription factor Serpent (Srp). Note: a and b show
the same data as Figure 3ab to allow for a comparison with ¢ and d,
demonstrating that the results are robust with respect to the lengths of the
analyzed regions (for b-d, n = 214, 338, 413, 196, 361, 216, 366 and 174,
respectively). (e) Sequence identity as in b, but for the motif of the transcription
factor Buttonhead (Btd), which is not expressed in S2 cells. The largely
overlapping sequence identities of the Btd motifs in conserved and non-
conserved enhancers indicate that the motifs for Btd in conserved enhancers in
S2 cells are not under constraint. (f) Position weight matrix logos for the Srp and
Btd motifs.
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Supplementary Figure 6 | Positional and compensatory conservation of TF
motifs in functionally conserved and non-conserved enhancers.

(a) Rate of positionally conserved and compensatory D. melanogaster Srp motifs
in relation to all four other Drosophila species in functional conserved enhancer
regions. The total number of D. melanogaster Srp motifs for each comparison is
shown above the bars (black), and percent conservation values are shown within
the bars (white). (b) Plot as in a, but in functionally non-conserved enhancer
regions. (c,d) Plots as in a and b, but limiting the evaluation to a subset of well-
aligned enhancer regions that have no undefined nucleotides (Ns) in the
pairwise alignments and have non-gapped orthologous ends. Together this
shows that motif turnover is common and that the loss of positionally conserved
Srp motifs can be compensated by the gain of Srp motifs at different positions
within the same enhancer. Further, Srp motifs are conserved at much higher
levels in conserved enhancers compared to non-conserved enhancers,
suggesting that they are important for S2 cell enhancer function.
(Supplementary Fig. 5). When assessing well-aligned sequences (c), motif
turnover maintains the number of serpent motifs at high levels of around 80%,
even over large evolutionary distances.

(e,f) Relative contribution of compensatory motif turnover increases with
evolutionary distance. (e) Fraction of functionally conserved enhancers with the
same number of Srp motifs between species with positionally conserved motifs
(blue), motifs conserved within an individual enhancer but not at the same
position (compensatory; red) or a mix of positionally conserved and
compensatory conserved Srp motifs (yellow). The total number of enhancers for
each comparison is shown above each bar; percentages per category are plotted
in white within the bars. (f) Plot as in e, but considering only a subset of
enhancers that are well aligned (c,d). For the vast majority of conserved
enhancers, the motifs are exclusively positionally conserved in closely related
species such as D. yakuba in e. However, the fraction of enhancers with
compensatory motifs increases significantly at larger evolutionary distances.
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Supplementary Figure 7 | Phylogeny of enhancer gain and loss events.
(a) Enhancer occurrences at non-redundant positions across species (binary
representation in which blue boxes indicate enhancer presence/function). (b)
Gain (blue triangles) and loss (red triangles) events assigned by parsimony to
different branches of the phylogenetic tree. We assigned a gain event if two or
more loss events would otherwise have to be assumed, but indicate the gain-

versus-loss ratios below the trees (e.g., 1:4 =

one gain or four losses; unclear

events are shown in gray). Overall, the phylogeny of all 8,180 non-redundant
enhancers identified in the genomes of the 5 species are shown on 31 (= 52 - 1)
different trees.
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Supplementary Figure 8 | Sequence changes of D. melanogaster and
D. yakuba gained enhancers are similar to expected neutral substitutions
between the two species.

(a) Same data as Figure 4e (boxes depict the median and the interquartile range,
and whiskers depict the 10th and 90th percentiles; outliers are shown
individually). (b) As in a, but for 100-bp core enhancer sequences. This shows
that the patterns of sequence conservation in gained and lost enhancers are
consistent between 500-bp enhancer sequences and shorter regions of 100 bp
centered on the enhancer peak summit.
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UCSC Genome Browser screenshots of expressed genes in S2 cells that are
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Supplementary Figure 10 | High quantitative and qualitative reproducibility
of STARR-seq in D. melanogaster ovarian somatic cells (OSCs).

(a) The quantitative reproducibility of STARR-seq in OSCs in two independent
biological replicates was assessed at combined enhancer peak summits (D.
melanogaster, 3,342 peaks; D. yakuba, 3,233 peaks; D. ananassae, 2,859 peaks) as
in Supplementary Figure 1a. (b) Same data as in a, but using peak calls and
fragment densities in the respective Drosophila genome coordinates before
coordinate translation. (c) Qualitative reproducibility of STARR-seq in OSCs as in
Supplementary Figure 1b. (d) Same as c, but using peak calls and fragment
densities in the respective Drosophila genome coordinates before coordinate
translation.
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Supplementary Figure 11 | Genomic distribution, functional conservation
and sequence changes of STARR-seq OSC enhancers.

(a-c) Similar genomic distribution of STARR-seq enhancers for three Drosophila
species in D. melanogaster OSCs. Genomic distribution analysis for (a) D.
melanogaster, (b) D. yakuba and (c) D. ananassae enhancers in OSCs as in
Supplementary Figure 2. Globally, the majority of identified enhancers were
located in introns (44.1-52.8%) and in intergenic regions (23.7-26.5%; see ref.
1).

(d,e) Functional conservation of open and closed D. melanogaster OSC enhancers
in D. melanogaster OSCs. D. melanogaster OSC enhancers were classified as open
and closed as described previously!. The conservation rates of (d) 2,269 open
and (e) 1,073 closed D. melanogaster OSC enhancers in D. yakuba and D.
ananassae (see Figs. 1c¢ and 6a for details).

(f,g) Number of sequence changes in D. melanogaster and D. yakuba gained, lost
or deeply conserved S2 or OSC enhancers are similar. (f) Analysis as in Figure
4e, however, based on three species only (D. melanogaster, D. yakuba, D.
ananassae) to allow the direct comparison between S2 cells and OSCs (boxes
depict the median and the interquartile range, and whiskers depict the 10th and
90th percentiles). (g) As in f, but for OSC enhancers. The numbers of sequence
changes for the different enhancer categories are highly similar between fand g,
confirming the results shown in Figure 4e and suggesting that the reported
numbers hold more generally, independent of the respective cell types.
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Supplementary Figure 12 | Changes in OSC enhancer activities and follicle
cell in vivo gene expression between D. melanogaster and D. yakuba
correlate globally.

Same data and heat-map presentation as in Figure 6d, but with matrix cells
colored according to enrichments irrespective of their significance.
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Supplementary Figure 13 | Differences in quantitative enhancer strength
follows a molecular clock.

Enhancer strength diverges with increasing evolutionary distance linearly, with
the number of substitutions per neutral site (branch length) similar to
qualitative enhancer conservation (Fig. 1c). The strong correlation of
evolutionary distance and the fraction of enhancers with at (a) 2-fold, (b) 4-fold,
(c) 6-fold and (d) 8-fold change in enhancer strength on non-redundant loci
between D. melanogaster and other Drosophila species shows that enhancer
strength is also conserved and follows a molecular clock. Note that the D.
melanogaster replicate comparison considers replicate 1 against replicate 2
within the same species.
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Supplementary Figure 14 | Global range of sequence identities for
functionally conserved and non-conserved enhancers.

Sequence identity distributions for functionally conserved (colored lines) and
non-conserved (dark gray lines) enhancers between D. melanogaster and other
Drosophila species. The distributions are largely overlapping, suggesting that
there is no selective pressure on the overall enhancer sequence. In addition, the
two extreme boundaries of the distributions indicate that sequences can be up to
95% identical (between D. melanogaster-D. yakuba) yet without conserved
function (only active in the D. melanogaster genome), whereas enhancer function
can be conserved despite as little as 39% sequence identity between D.
melanogaster-D . willistoni.
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Supplementary Figure 15 | S2 cell and OSC enhancer gains are nearly

additive.

Enhancers gained in S2 cells or OSCs show only limited overlap (right column),
such that the number of gained enhancers is nearly additive for both cell types in
D. melanogaster (top) and in D. yakuba (bottom; enhancer gains for both cell
types are defined on the basis of three-way analyses considering only D.
melanogaster, D. yakuba and D. ananassae as outgroup). The overlap of the
gained enhancers is of the same magnitude as for the overlap of all enhancers in
S2 cells and OSCs (left column), which suggests that different enhancers are
gained in different cell types and the total number of enhancer gains in more
complex tissues or organisms scales with the number of cell types and,
presumably, the difference between cell types. (As the overlap of gained
enhancers is even slightly lower than the overlap of all enhancers (1.8- to 3.6-
fold), one could speculate that gained enhancers might have ‘more unusual’
sequence properties that are less likely to be shared by different cell types.)
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Supplementary Table 1 | Number of reads and peak calls for all STARR-seq
screens

Read pairs are the total number of paired reads mapped to the respective
genome assembly. Unique fragments are read-pairs that were unique with
regard to chromosome, start, end, and strand information and passed the non-
heuristic redundancy filter (see methods). Lifted unique fragments are the
number of mapped D.xxx fragments that were successfully lifted to dm3
coordinates. Peaks (called in D.xxx) are the number of enhancer peak calls within
each respective species based on fragments mapped within the respective
genomes. Peaks (dm3 lifted) are the number of peaks called in D.xxx, which could
be lifted to dm3. Peaks Peaks (called in D.mel) are the number of peaks for each
species based on peak calling with dm3 lifted fragments of each species. We
restricted peaks to those in the euchromatic chromosomes (i.e. excluding
heterochromatic chromosomes (Het) from the analysis).
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Supplementary Table 2 | TF motif conservation in functionally conserved
and D. melanogaster-specific S2 cell enhancers.

TF expression levels in S2 cells (RPKM values) and the TF motifs’ preferential
conservation in functionally conserved and D.mel-specific S2 enhancers. Table
columns are: TF name, RPKM in S2 cells, TF motif (as in ref. 5), preferential
conservation (fold increase), preferential conservation (binomial p-value).

-> This table is available for download at http://www.nature.com/ng and
http://stark.imp.ac.at/data/arnold_gerlach_nature_genetics_2014

Supplementary Table 3 | RNA-seq in follicle cells — analysis statistics.

Gene expression data of follicle cells were obtained by RNA-seq from D.mel and
D.yak adult females®. Number of reads, uniquely mapped reads, and uniquely
mapped and lifted reads are shown.

Species Reads Uniquely Uniquely mapped
mapped reads reads (lifted)

D.mel 33,510,652 17,624,648 17,624,648
D.yak 24,308,648 17,370,054 14,017,986

Supplementary Table 4 | RNA-seq in follicle cells — gene expression (RPKM)
values.

Gene expression levels in D.mel and D.yak follicle cell enriched samples in table
format with the columns FlyBase gene ID, gene name, CG ID, RPKM D.mel, RPKM
D.yak.

-> This table is available for download at http://www.nature.com/ng and
http://stark.imp.ac.at/data/arnold_gerlach_nature_genetics_2014
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Supplementary Table 5 | Oligonucleotide (primer) sequences.

Primer name Sequence

STARR-seq RT

dyak_m1_fw
dyak_m1_rv
dyak_y2_fw
dyak_y2_rv
dyak_y1_fw
dyak_y1_rv
dyak_m2_fw
dyak_m2_rv
dana_m1_fw
dana_m1_rv
dana_a2_fw
dana_a2_rv
dana_al_fw
dana_al_rv
dana_m2_fw
dana_m2_rv
dpse_m1_fw
dpse_m1_rv
dpse_p2_fw
dpse_p2_rv
dpse_p1_fw
dpse_pl_rv
dpse_m2_fw
dpse_m2_rv

CTCATCAATGTATCTTATCATGTCTG
GCTGGCAATTGTTTTAATCGTTACAACGGCAAG
AAAGCCAAAGCTCCGTAATGATTATTCAGCGCTTCCTTTCGCTCGCCATC
GAAAGGAAGCGCTGAATAATCATTACGGAGCTTTGGCTTTGGCTTTGCCTATC
AAGGTTCCCTTTTGCCCAGCTTGGACGCAGTTC
GCGGGCAATTGTTTTAATCGCTACAACAGC
ACAGCCACCGCTTCGTAATGATTATTCAGCGCTTCCTTTCGCTCGATCCGCTG
GAAAGGAAGCGCTGAATAATCATTACGAAGCGGTGGCTGTCATATCGATCG
TCCCATTGCCATTCTTACCCACATTCGCATTGAC
ACAAAAGTCTGCTGTTCGAAGGAACTTTAATCATAG
TCCGAGGGGCTGTTAAATATCAGCATCTGTTGACCAGATGTAGTTTGTACAC
CATCTGGTCAACAGATGCTGATATTTAACAGCCCCTCGGACGAGTGTGTGTG
ACCTGACCTCTGCCATTGAAGGACCTCAAATC
GCATAGTTTCCGTTGCACAGAGACCCTGATAAAG
GCCTTATCAAGCCGCTTTATCACAGTCCCCGGAGCATTAACTTGTCCGTTTA
TTAATGCTCCGGGGACTGTGATAAAGCGGCTTGATAAGGCCATCTCGGAAATC
ACCGACCCTCCCGCCCAACCCCTTTTCACTTG
GAGATTTGCCTTCCGCAGCAAGCTGCCG
CGCCGGGGCGGGAGGATGACTCATCCGCTCAAGAAGCCGGGATTGATGCGTA
CCGGCTTCTTGAGCGGATGAGTCATCCTCCCGCCCCGGCGAGAACAGTCTCT
GAAGGATATCTTTTGATATGCTGATAAGGAGCGCC
ATGATATGCCTTGCTGCAGCGTCACCTGCTGC
CAGGATCGGTCTGACATGACTCATGCCGCCATTGATAAAACGGGATCACGGAG
TTTTATCAATGGCGGCATGAGTCATGTCAGACCGATCCTGAGAGTTCCGAGC
GAAGGATTTCTTTTGAGATACCCAAAAGGAGTGGC

Supplementary Data Set 1 | STARR-seq peak calls.
STARR-seq peak calls for each species, replicate, and cell type (ZIP file).

-> This table is available for download at http://www.nature.com/ng and
http://stark.imp.ac.at/data/arnold_gerlach_nature_genetics_2014
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